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1 Definitions

This completes the construction that we motivated spectral sequences with. Consider a Serre fiber
sequence F → X

π−→ B where B is a finite CW complex and F is path connected. Then we get a family
of fiber sequences by restricting the fibration

Xp
..= π−1(Bp) ⊆ X → Bp

It is a fact that these maps are still fibrations. The previous case is for the trivial fibration B → B.
We claim that the following is an exact couple⊕

Hq(Xp)
⊕

Hq(Xp)

⊕
Hq(Xp, Xp−1)

resXp−1

∂resXp

Where ∂ is the coboundary map from the LES of pairs, and res stands for the restriction of a map to
the given set. The fact that this is an exact couple is clear because we have just “rolled up” the LES
in cohomology for pairs. The Serre SS has also the simplifying characteristics

Theorem (Hatcher Chapter 5, Thm 5.3, [?] Thm 5.3.2, Example 5.2.2). If the base is simply connected
then

• The second page is characterised by E2
pq

∼= Hp(B;Hq(F )).

• If the fibration splits, that is X = B × F then the SSS degenerates at page 2.

• The sequence is first quadrant.

• The sequence converges to H∗(X), more precsicely we have that when p + q = n then E∞
p,q =

Hn(X)
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• The stable terms E∞
p,n−p are isomorphic to the quotients F p

n/F
p−1
n for some filtration F p

n of
Hn(X). (The infinity term is here just the stable values as the sequence is first quadrant it
degenerates at a finite page).

If we perform the re-indexing given by q 7→ p + q then we again have a spectral sequence with
differentials now

dpqr : Epq
r → Ep+r,q+r−1

r

which still go straight across as desired, however the groups are given by

Epq
1 = Hp+q(Xp, Xp−1)

Notice that this also brings us into complete parity with the initial sketch / motivation that we
provided. Note that this reindexing is a visual change, studying the maps specified by the exact couple
we require the maps to change degree in this way, the point is that the exact couple is exact, and so
the maps are not those that are given by just going around the triangle, we must do what is specified
here.

2 Complex Projective Spaces

Here we will use the SSS to compute the cohomology of CPn. We will consider the fibration

∗ → CPn → CPn

And recall that CPn has a cellular structure given by

∅ ⊆ ∗ ⊆ CP 1 ⊆ · · · ⊆ CPn−1 ⊆ CPn

Then right away using the results on SSS we know that the E2 page is given by

•
...

...
...

...

H0(CPn;H1(∗)) H1(CPn;H1(∗)) H2(CPn;H1(∗)) H3(CPn;H1(∗))

H0(CPn;H0(∗)) H1(CPn;H0(∗)) H2(CPn;H0(∗)) H3(CPn;H0(∗))

• •

Using that the cohomology of a point is just Z in degree 0 and 0 elsewhere this is then

•
...

...
...

...

H0(CPn; 0) H1(CPn; 0) H2(CPn; 0) H3(CPn; 0)

H0(CPn;Z) H1(CPn;Z) H2(CPn;Z) H3(CPn;Z)

• •
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Or simply

•
...

...
...

...

0 0 0 0

H0(CPn) H1(CPn) H2(CPn) H3(CPn)

• •

Thus this SS clearly both degenrates and collapses at (the latest at) the E2 page. We also know that
these groups are isomorphic to the kernel mod the image of the groups on the E1 page, using our
formula we can write out the E1 page as

•
...

...
...

...

H2(CP 0,CP−1) 0 H4(CP 1,CP 0) 0 H6(CP 2,CP 1) · · ·

H1(CP 0,CP−1) 0 H3(CP 1,CP 0) 0 H5(CP 2,CP 1) · · ·

H0(CP 0,CP−1) 0 H2(CP 1,CP 0) 0 H4(CP 2,CP 1) · · ·

• •

Noting that for p odd CPn has no p skeleton. We claim that

Ha(CP b,CP b−1) = Ha(S2b) =

{
Z, a = 0, 2b

0, else

as the CW structure is gluing a D2n into the previous Cn−1 and so when we collapse that we just get
the 2n sphere. Plugging these values into the spectral sequence gives

•
...

...
...

...

H2(S0) 0 H4(S2) 0 H6(S4) · · ·

H1(S0) 0 H3(S2) 0 H5(S4) · · ·

H0(S0) 0 H2(S2) 0 H4(S4) · · ·

• •
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or explicitly

•
...

...
...

...

0 0 0 0

Z 0 Z 0

• •

Since it is clear that the maps are all zero the sequence has already both collapsed and degenerated at
page 1, clearly taking cohomology gives the same thing, so E2 and therefore the cohomology of CP 2

is just Z in even degrees as seen here.

3 Hopf Fibration

The generalised Hopf fibration is given by

U(1) = S1 → S2n+1 → CPn

Where the surjection is just the projection quotienting out the antipodal points. We also handle the
case of n = ∞. In this case the E1 page is hard to calculate. This is because it is not easy to find the
preimage of the p skeleton, CP p ⊆ CPn, this is a sort of S1 bundle over CP p and non-trivial, as well
as finding the relative cohomology groups. Instead we will just start at the E2 page, and using the
fact that the E∞

∗ groups are given by H∗(S2n+1) (the cohomology of the total space, the associtated
gradeds). Because these groups are known we will try to find the “difference” between these groups
and the E2 page and thereby deduce the E2 page.The E2 page is as before

•
...

...
...

...

H0(CPn;H1(S1)) H1(CPn;H1(S1)) H2(CPn;H1(S1)) H3(CPn;H1(S1))

H0(CPn;H0(S1)) H1(CPn;H0(S1)) H2(CPn;H0(S1)) H3(CPn;H0(S1))

• •

Becuase Hi(S1) = Zδi=0,1 only the two bottom rows remain, the rest of the groups are zero. The
differentials are going one down and two to the right. From this we see that on the E3 page all
differentials must be zero and hence the sequence stabilises on E3, which in turn therefore is given by
the cohomology of the total space Sn+1. Thus the E3 page must be given by the associated graded of
the cohomology of the sphere. The sphere has cohomology Hi(S2n+1) = Zδi=0,2n+1.

Now to use this fact we need to understand how to go from the associated graded, or the E∞ page,
to the cohomology of the total space and vice versa. Heres how I was told how to do it. First look at
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the E∞ page, then we will extract Hn(E) from the diagonal E∞
p,q where p+ q = n

q •

3

2

1

• 1 2 3 4 •

p

1 +
1 =

2

So fixing an n picks out a diagonal, this diagonal defines a collection of extension problems. Because
we are cohomologically graded our arrows point down and to the right, so we write one of the diagonals
as

0 → A1 → A2 → · · · → Ak → 0

note that it is bounded because our sequence is first quadrant. Now we have some groups, A1, ..., Ak

and we we start with the extension problem

0 → Ak → E1 → Ak−1 → 0

then we can iterate, solving the next problem,

0 → E1 → E2 → Ak−2 → 0

etc, because this is a bounded chain the process terminates and the group will be the required coho-
mology. However extension problems are not always unique, moreover the spectral sequence does not
contain extra information to fix the solutions, thus we only have possible choices for the cohomology
groups, as some solution. For us this wont matter because the extension problem will be unique.

Now we can apply this and our knowledge about the total cohomology to find the cohomology of
the base. First we know only that on the E∞ page all diagonals are zero execpt the zeroeth diagonal
and the 2n + 1 diagonal on which there will apear at least a Z (there may be other torsion groups,
that lead to trivial extensions!). Now we also know that our space is connected simply connected, in
particular its zeroeth cohomology is Z and first cohomology is zero (see remark for details). So we
start out knowing at least a couple groups on the E2 page:

H1(S1) • Z 0 ? · · ·

H0(S1) Z 0 ? · · ·

• •

H0(CPn) H1(CPn) H2(CPn)

(Notive that the axis labelled can be tensored together to get the group in the middle, this is true by
the universal coefficients in this case because some Tor terms vanish). We also know on the E3 = E∞
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page that there is a Z in the lower left corner, as the Z on that diagonal cannot appear elsewhere.
The same goes for the Z in the 2n + 1 degree we know the diagonal and it must be contained to the
bottom two rows (all other groups because they are cohomology of previous page must be zero, as all
other groups are already zero). So we know the E3 page looks like the following

• 0 0 · · · ? 0 · · ·

Z 0 · · · 0 ? · · ·

• 2n+ 1 •

where at least one of the ? are Z (they might both be non-zero). Now we can solve the problem. Look
at the Z at E1

0,1, then on the next page it is zero, thus it is either in the image of the map in or not in
the kernel of the map out. The map in is the zero map and so to get a zero in cohomology the kernel
must be zero, hence we have an injection. Thus the group E1

2,0 must contain a Z , but the cohomology
on the next page is again a zero and moreover we know that the kernel of the map out is the whole
group (its the zero map) and therefore the map in must be everything and so the map is a surjection.
Thus the map E1

0,1 → E1
2,0 is an isomorphism!

H1(S1) • Z 0 Z 0 ? · · ·

H0(S1) Z 0 Z 0 ? · · ·

• •

H0(CPn) H1(CPn) H2(CPn)

∼

Similarly the first zero column implies that the third column must be zero. Note the groups in the
second row are isomorphic to those in the first row from the setup and thats how we can raise the
group to the second row. This process clearly can be iterated (indefinitely for CP∞) up until the last
2n+1 diagonal where we again need to do some analysis, but up to that point we have already shown
that the cohomology groups alternate zero and Z .

Remark. (Jayden) The general philsophy in spectral sequences is that there are two directions

E1 ↔ E∞

One can start at the first page and compute the later ones, or start at the last page and compute the
earlier ones. In general starting at the last page will require only formal homological manipulations,
while going forward will involve more in depth computations around differentials.

Remark. Simply connected spaces have trivial zeroth and first cohomology. This can be deduced
from the vanishing of Tor terms in the universal coefficients theorem. Another way of seeeing this is
that these groups are already stable on the E2 page, this is clear because both differentials are zero,
and on the next page in this case the group must be zero, as it is the cohomology of the sphere.

3.1 Frame Bundles

Consider the fibration
SO(2) = S1 → SO(3) → S2
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Figure 1: A deduction of the ring structure on the LHS.

The E2 page is now the cohomology of the base, which is S2, which we know and therefore can write
out straight away

• Z 0 Z

Z 0 Z

• •

d

there is a single differential that can be non-trivial.

3.2 Classifying Space of Unitary Groups

There is a fibration
U(n) → EU(n) → BU(n)

for which the n = 1 case is actually given by the sphere bundle over CP∞ above.

3.3 Classifying Spaces Compared

There is a ses of groups

SU(2) → U(2)
det−−→ S1

and the classyfing space functor sends that to a fibration

BSU(2) → BU(2) → BS1 = CP∞

This collapses using the so called “checker board principle”.
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